
SWYSWYK: a new Sharing Paradigm for the Personal

Cloud

Paul Tran-Van
1,2,3

 , Nicolas Anciaux
1,2

 and Philippe Pucheral
1,2

1 Inria Saclay-Île-de-France, 1 rue d'Estienne d'Orves , 91120 Palaiseau, France
2 DAVID Lab., University of Versailles, 45 av. Etats-Unis, 78035 Versailles, France

3 Cozy Cloud, 158 rue de Verdun, 92800 Puteaux, France

first_name.last_name@inria.fr

Abstract. Pushed by recent legislation and smart disclosure initiatives, the Per-

sonal Cloud emerges and holds the promise of giving the control back to the in-

dividual on her data. However, this shift leaves the privacy and security issues

in user's hands, a role that few people can properly endorse. This demonstration

illustrates a new sharing paradigm, called SWYSWYK (Share What You See

with Who You Know), dedicated to the Personal Cloud context. It allows each

user to physically visualize the net effects of sharing rules and automatically

provides tangible guarantees about the enforcement of the defined sharing poli-

cies. The usage and internals of SWYSWYK are demonstrated on a running

prototype combining a commercial Personal Cloud platform, Cozy, and a se-

cure hardware reference monitor, PlugDB.

Keywords: Personal Cloud, Privacy-by-Design, Access Control, Data Security

1 Introduction

The ever increasing centralization of personal data on servers exacerbates the risk of

privacy leakage due to piracy and opaque business practices. Today, a rebalancing of

personal data management is occurring worldwide thanks to legislation evolution [1]

and smart disclosure initiatives (e.g., blue and green buttons in the US, MesInfos in

France). This enables individuals to get their personal data back from companies or

administrations and organize it in a Personal Information Management System

(PIMS) [2] and share it with applications and users under their control.

But empowering citizens to leverage their personal data leaves the privacy and se-

curity issues in user's hands, a paradox if we consider the weaknesses of individuals’

defenses in terms of computer security and ability to administer sharing policies. Ex-

isting sharing models [3] are geared towards central authorities and their secure en-

forcement requires a deep expertise, out of reach of individuals. Conversely, decen-

tralized tools (e.g., Web of Trust models or FOAF dissemination rules [4, 5, 6]) put

on individuals the burden of defining manually each basic sharing rule and leave them

on their own to manage complex cryptographic protection against piracy [7]. This

often leads to consider data sharing as an intractable burden, letting desperate owners

2

either define far too permissive policies [8] or delegate the administration of their

PIMS to centralized service providers. The circle would come back around, with ser-

vice providers now in possession of the complete individual's digital history.

This demonstration proposes an answer to solve this issue. It capitalizes upon a

new paradigm called SWYSWYK (Share What You See with Who You Know) helping

the PIMS owner to visually check and sanitize the net effect of a sharing policy over

her data [9]. A reference architecture providing tangible guarantees about the en-

forcement of SWYSWYK policies has been discussed in [10]. We demonstrate how

the SWYSWYK paradigm can be put in practice, by combining an open-source PIMS

platform, Cozy
1
, with a reference monitor embedded in secure hardware, PlugDB

2
.

2 SWYSWYK Baseline

SWYSWYK is not yet another access control model. Rather, the access control policy

is defined by the PIMS platform. It simply does the assumption that the sharing

granularity is the document and that every shareable document is made viewable by

the PIMS owner. We do not accept a smaller granularity as it could make the visuali-

zation difficult. Every user (called subject hereafter) the owner wants to interact with

is also assumed to correspond to a PIMS viewable document (e.g., a contact record).

The third and last assumption is that the access control policy is materialized by a set

of Access Control List (ACL, or permissions) of the form < s, d, a >, where s and d

respectively refer to a subject and a document stored in the PIMS, and a is an action

granted to s on d.

The PIMS owner has the ability to check these ACLs and freely filter out those

which presumably hurt her privacy thanks to administration tools detailed next. This

principle gives substance to the Share What You See with Who You Know

(SWYSWYK) principle. This is in frontal opposition with approaches where sharing

policies are defined by a set of potentially complex rules, evaluated on the fly by an

opaque reference monitor. The logic of a SWYSWYK reference monitor can be trivi-

ally understood by anyone: operation a on d is granted to s iff (s,d,a) ACL.

The tricky point of the SWYSWYK paradigm lies in the detection and validation

of suspicious ACLs. Indeed, permissions are created through a genuine access control

model, provided by the PIMS, on which no security assumption can be made.

The global ACL validation process works as follows. First, the genuine sharing

policy is translated into a materialized set of candidate ACL named ACL*. Second,

suspicious ACLs are detected and put in quarantine, in a set named ACL
?
, waiting for

the decision of the PIMS owner. Non suspicious ACLs are directly integrated in the

set ACL
+
, the unique set to be considered by the reference monitor to grant or deny

accesses to documents. Third, the PIMS owner sanitizes the set of suspicious ACLs

on a case-by-case basis. She visualizes the net effect of suspicious ACLs in ACL
?
 and

decides to store them in ACL
+
 if she considers them innocuous or in ACL


 otherwise.

1 https://cozy.io/en/
2 https://project.inria.fr/plugdb/

3

We propose two mechanisms to automatically detect suspicious ACLs and feed

ACL
?
 from the content of ACL

*
. The first mechanism is based on an Advisor process

identifying elements of ACL
*
 which are contradictory to past decisions. This mecha-

nism is based on the assumption that owners exhibit a rather stable data disclosure

behavior over time [11]. The second mechanism uses watchdog triggers highlighting

ACLs concerning sensitive documents (e.g., "which new subjects have access to my

medical records?"), sensitive subjects (e.g., "which new documents can be seen by my

manager?") or sensitive associations (e.g., "which new authorizations my colleagues

have on my family photos?”). This mechanism is further detailed in [10].

3 SWYSWYK Architecture

The objective of this architecture is to protect the owner's data by construction against

any form of confidentiality attacks. Presented in Fig. 1, it distinguishes three main

parts with different assumptions in terms of trustworthiness: (i) an untrusted environ-

ment (UE) on which no security assumption is made for the code nor for the data, (ii)

an isolated environment (IE) on which general purpose code can be run with the guar-

antee that it cannot leak any information but with no guarantee about the soundness

and honesty of its output (i.e., code can be corrupted) and (iii) a Secure Execution

Environment (SEE) which runs only certified core programs and protects data and

code against snooping and tampering. In this demonstration, the UE is represented

by a personal computer, with a Cozy instance running on it, using an Internet connec-

tion. Cozy is a representative open-source PIMS suite, gathering personal data from

multiple sources. The IE is a Raspberry Pi 3 without any network connection. Finally,

the SEE is played by PlugDB, a secure and open hardware/software platform devel-

oped at Inria. It combines a smartcard to store cryptographic secrets, a microcontroller

(MCU) running a relational database engine [12] and a microSD flash card storing the

database with crypto-protection against snooping and tampering. It communicates

with both the UE (WiFi IEEE 802.11n) and the IE (High Speed USB 2.0).

PIMS data system. In Cozy, one can install web app created by any developer or

third-party on which none security assumption can be made. It is then part of the un-

trusted environment UE. All documents of the PIMS need then be stored encrypted in

this area to protect them against confidentiality attacks.

Reference monitor. The reference monitor executes the Allowed function which

grants or denies access. It must be part of the secure core of the architecture and em-

bedded into the SEE to guarantee that it cannot be bypassed, observed nor corrupted

by any external application. It acts as an incorruptible doorkeeper.

Administration console. The administration console is used to help the PIMS

owner to perform the ACL validation task. This console runs the watchdog triggers

over ACL
*
 and puts suspicious ACLs in quarantine in ACL

?
. The administration con-

sole must be trusted, but cannot be entirely executed inside the SEE. Indeed, it in-

volves interactions with the owner through a GUI and requires displaying the content

of documents and subjects. Thus, the Administration GUI must be isolated in the IE

to prevent any information leakage.

4

Internal data structures. The ACL
*
, ACL

?
, ACL

+
 and ACL


 sets, the document

metadata and the encryption keys must all be stored inside SEE for obvious security

reasons, but also for performances issues, as storing them in the UE would incur pro-

hibitive decryption and integrity costs. Each ACL set is stored as a bipartite graph to

avoid any combinatorial explosion from large sharing rules. This allows the access

control to remains consistent by construction (the decision is unique), com-

plete (the decision always exists) and can be evaluated in logarithmic time.

4 Demonstration scenario
3

Fig. 1. Demonstration platform.

The first part of the demonstration (see Fig. 2, steps 1-4) shows the utility of

SWYSWYK in terms of privacy protection. We use a personal cloud populated by

Cozy applications with a set of predefined documents and sharing rules, to which the

attendees can connect as Alice (the owner). A remote personal cloud instance, identi-

fied as Bob (a subject), is also pre-installed. The attendees first browse Alice's Cozy,

and see contact files with pictures representing subjects (among which Bob and Boss,

the manager of Alice) and a set of general purpose pictures (among which photos of

Alice's 'swollen belly' to be shown to her doctors). The privacy expectations of Alice

are that (i) her medical pictures are not shared with anybody and (ii) only innocuous

documents are shared with her manager.

The attendees use the 'Files' application on Alice's Cozy and create a new sharing

rule through the interface. They are then invited to go in the Administration GUI, to

look at the existing sharing rules, represented as logic-based predicates on documents’

metadata. Unsurprisingly, this task requires a deep expertise, out of reach of the regu-

lar user as the number of rules increases. Alternatively, the GUI shows the corre-

3 A video of the demonstration is available at : http://wanda.inria.fr/CIKM/cikm.ogg

PlugD
B

(SEE)

Cozy
(UE)

Raspberry Pi
(IE)

Smartcard SD

 Wifi MC

5

sponding set of visualizable ACLs, where attendees can discover that Bob has a read

access to compromising pictures of Alice - confirmed when connecting to Bob's per-

sonal cloud -. However, the size of the ACL set proscribes any exhaustive 'manual'

check. The attendees then activate the Advisor module to identify suspicious ACLs.

They also create (or choose predefined) watchdog triggers to automatically detect

appearance of sensitive objects (e.g., medical pictures) or subjects (e.g., Boss) in the

produced ACLs. As a result, the attendees detect further ACLs hurting Alice's priva-

cy, which can be rejected with direct effect on Bob's Cozy.

The second part of the demonstration (Fig. 3, steps 1-4 and step 5) focuses on the

security properties and shows what is happening 'under the hood' at rule creation and

execution time. The attendees play the attacker role and add a malicious rule hurting

Alice privacy. The GUI shows what is running in the three environments, where and

when data is decrypted, keys are stored and access decisions are taken.

Fig. 2. Demonstration scenario and GUI.

The third part of the demonstration (Fig. 3, step 6) focuses on performance, scalability

and compliance with constrained secure execution environments like PlugDB. We use

an ACL generator, producing large sets of ACLs combining existing subjects and

objects. The performances of the reference monitor are plotted along with detailed

statistics about execution times, cryptographic impact and I/O costs.

5 Conclusion

This demonstration illustrates the three following properties attached to the

SWYSWYK paradigm.

Usability. The focus of the demonstration is on validating and sanitizing the result-

ing set of ACLs. It highlights the effectiveness of watchdog triggers and the Advisor

process to help the owner filtering out compromising ACLs, even when applied to a

large set of candidate ACLs.

33
Open Cozy App

UE   SEE   IE

Bob’s
personal cloud

1

2
Perf. analysis 6

Alice’s
personal cloud

See sharing

rules 3
Visualize

ACLs effects

4

Add sharing rule

Advisor: watchdog

triggers

& past compliance

5

6

Security by construction. The combination of document encryption in UE, code

isolation in IE and a tamper-resistant SEE provides built-in guarantees to the owner

against confidentiality attacks, out of reach of traditional approaches. Moreover, vali-

dating the approach in a highly constrained tamper-resistant environment like PlugDB

is a proof of the simplicity of the reference monitor and of the associated administra-

tion tools. This simplicity also opens the way to a formal proof of the embedded code.

Performance. The Cozy queries executions are slowed down due to encryption and

data communication. However, the overhead is kept reasonable for a regular use. This

validates the practicality of the approach while large performance gains can be ex-

pected with environments providing higher communication throughput.

While the Personal Cloud paradigm is pushed by recent legislation and smart dis-

closure initiatives, finding new ways to intuitively and securely share personal data is

paramount. We hope that this work actively contributes to this challenge.

References

1. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April

2016 on the protection of natural persons with regard to the processing of personal data

and on the free movement of such data.

2. Abiteboul, S., André, B., Kaplan, D. Managing your digital life. In: Communications of

the ACM (CACM), 58(5), 32-35 (2015).

3. Bertino, E., Ghinita, G., and Kamra, A. Access control for databases: Concepts and sys-

tems. In: Foundations and Trends in Databases (2011).

4. Bellavista, P., Giannelli, C., et al. Peer-to-Peer Content Sharing Based on Social Identi-

ties and Relationships. In: IEEE Internet Computing, 18(3), 55-63 (2013).

5. Carminati, B., Ferrari, E., and Perego, A. Rule-Based Access Control for Social Net-

works. In: On the Move to Meaningful Internet Systems, pp. 411-415 (2006).

6. Van Kleek, M., Smith, D.A., Shadbolt, N. et al. A decentralized architecture for consoli-

dating personal information ecosystems: The WebBox. In: PIM (2012).

7. Wang, F., Mickens, J., Zeldovich, N., and Vaikuntanathan, V. Sieve. Cryptographically

Enforced Access Control for User Data in Untrusted Clouds. In: USENIX Symposium on

Networked Syst. Design & Implem. (2016)

8. Liu, Y., Gummadi, K. P., Krishnamurthy, B., Mislove, A. Analyzing facebook privacy

settings: user expectations vs. reality. In: Proceedings of ACM SIGCOMM conference on

Internet measurement conference, pp. 61-70 (2011).

9. Tran-Van, P., Anciaux, N., Pucheral, P. A new Sharing Paradigm for the Personal Cloud.

In: Trust, Privacy & Security in Digital Business, pp. 180-196 (2017).

10. Tran-Van, P., Anciaux, N., Pucheral, P. SWYSWYK: a Privacy-by-Design Paradigm for

Personal Information Management Systems. To appear at the 26th International Confer-

ence on Information Systems Development (2017).

11. Roth, M., Ben-David, A., Deutscher, D., Flysher, G., Horn, I., et al. Suggesting friends

using the implicit social graph. In: Proceedings of the 16th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 233-242 (2010).

12. Anciaux, N., Bouganim, L., Pucheral, P., Guo, Y., Le Folgoc, L., and Yin, S. MILo-DB:

a personal, secure and portable database machine. In: Distributed and Parallel Databases,

32(1), 37-63 (2014).

